电感电流能否突变
流经电感的电流能否突变?突变的含义就是在无穷小的时间内完成变化。反激电源的开关管从导通切换为关断时,原边的电流迅速降为0,这与我原本的认识——流经电感的电流不能突变——相悖。如果流经电感的电流不可以突变,那么怎么理解反激电源原边电流的变化呢?大部分帖子都持“电容两端电压和流经电感的电流不能突变”的观点,有一个解释是能量不能突变,即能量的变化率,也就是功率不能无穷大。似乎也有道理。但也有反例,比如一个由电压源,电感和机械开关构成的电路,闭合开关对电感进行充电,然后突然断开开关,那么电路中的电流将迅速降为0,即di/dt是一个很大的值。此时,电感两端将产生很大的感应电压,有可能损坏电感,也有可能击穿开关之间的空气产生放电现象(磁场能量转化成什么形式的能量?)。这确确实实是一个电感电流突变的例子咧。
电感储能的判断依据
(相关资料图)
电感是否储能是根据什么判断的?根据电感两端是否有自感电压吗?电感正在阻碍电流变化就是在储能吗?先看一个例子,如下图4。先保持S2断开并闭合开关S1,电源开始对电感充电。待电流稳定后,电感两端电压为0,此时电感相当于一条导线。这个时候电感已经将电源提供的能量以磁场能量的形式存储了,但此时并没有自感电压!接着将S1断开并闭合S2,电感再次阻碍电流的变化,从能量角度看,电感将之前存储的磁场能量释放了。所以回答刚才的问题,电感两端有自感电压说明电感正在起阻碍作用,起阻碍作用时既可以是在存储能量,也可以是在释放能量。当阻碍作用消失(即电流变化率为0),自感电压为0,能量存储完毕或释放完毕。
电感储能公式的推导
电感储能公式推导5如下。
红色方框为推导得到的储能公式,但是常见的储能公式却如下:
原因在于红色方框中的储能公式表示从t0时刻到t时刻电感储存的能量,如果求电感存储的总能量,则t0=-∞,且i(t0)=i(-∞)=0,于是得到了常见的储能公式。
安培匝数
通电线圈(coil)能够产生磁场,称为电磁体(electromaget),就像永磁体(permanent magnet)一样。可以通过控制电流大小和线圈匝数来控制电磁体的磁场强度(strength)和极性。匝数不变,通电电流越大,磁场越强;通电电流不变,匝数越多,磁场越强,反之亦然。 为了比较不同通电线圈产生的磁场的强度,也为了建立一个测量电磁体的磁通势(magnetomotive force)的基础,引入了安培匝数(ampere-turns)的概念,记为NI,等于线圈通电电流(A)和线圈匝数的乘积,作为磁通势的单位。比如一个通电电流为10A,匝数为10的线圈,它的磁通势为100个安培匝数,即100NI。 安培匝数每米,顾名思义,就是每米的安培匝数。
伏秒平衡
在稳定状态下,电感在一个开关周期内电流的增量等于电流的减量,即“开”期间的电流乘时间等于“关”期间的电流乘时间。如果不满足伏秒平衡,那么电感经过一个又一个周期后,存储的能量将不断增大,这是不可能的。
磁通(magetic flux)
摘自百度百科:
磁通势/磁动势(magneto motive force)
根据百度百科,磁通势/磁动势定义是磁场强度H沿闭合路径的线积分,是线圈中电流的磁效应的度量,大小等于线圈匝数N和线圈电流I的乘积,方向符合右手定则。若线圈不止一个,则磁通势等于每个线圈的磁通势的代数和。
参考链接:1. 电感突然断电的后果 请大家详细给讲解下,谢谢2. 电容电压和电感电流不能突变的本质是什么?3. 为什么电容的电压不能突变和为什么电感的电流不能突变??4. Energy Stored in an Inductor5. energy stored in an inductor6. Ampere-turns explaination?7. 关于伏秒平衡原理的解释